Effect of Graphene Oxide (GO) on the Morphology and Microstructure of Cement Hydration Products

نویسندگان

  • Liguo Wang
  • Shupeng Zhang
  • Dapeng Zheng
  • Haibin Yang
  • Hongzhi Cui
  • Waiching Tang
  • Dongxu Li
چکیده

In this study, the effects of graphene oxide (GO) on the microstructure of cement mortars were studied using scanning electron microscopy (SEM), thermogravimetric (TG), and X-ray diffraction (XRD) techniques. Cement mortar samples with different proportions of GO (0.02, 0.04, 0.06, and 0.08 wt % based on the weight of cement) were prepared. The test results showed that GO affected the crystallization of cement hydration products, C-S-H (calcium silicate hydrate is the main hydrate product) and CH (calcium hydroxide). The morphology of hydration products changed with the increase of GO content. Furthermore, the results of XRD analyses showed that the diffraction peak intensity and the crystal grain size of CH (001), (100), (101), and (102) for GO samples increased considerably compared with the control sample. Based on the results, it can be understood that GO can modify the crystal surface of CH, leading to the formation of larger crystals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniformly Dispersed and Re-Agglomerated Graphene Oxide-Based Cement Pastes: A Comparison of Rheological Properties, Mechanical Properties and Microstructure

The properties of graphene oxide (GO)-based cement paste can be significantly affected by the state of GO dispersion. In this study, the effects of uniformly dispersed and re-agglomerated GO on the rheological, mechanical properties and microstructure of cement paste were systematically investigated. Two distinct dispersion states can be achieved by altering the mixing sequence: Polycarboxylate...

متن کامل

The Influence of Graphene Oxide on Mechanical Properties and Durability Increase of Concrete Pavement

Herein, the performance of graphene oxide (GO) in improving mechanical properties and subsequently reducing the permeability of cement composites used in concrete pavement, is studied. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was...

متن کامل

Dynamic Mechanical Properties and Microstructure of Graphene Oxide Nanosheets Reinforced Cement Composites

This paper presents an experimental investigation on the effect of uniformly dispersed graphene oxide (GO) nanosheets on dynamic mechanical properties of cement based composites prepared with recycled fine aggregate (RFA). Three different amounts of GO, 0.05%, 0.10%, and 0.20% in mass of cement, were used in the experiments. The visual inspections of GO nanosheets were also carried out after ul...

متن کامل

Effect of Graphene Oxide Nanoparticles Addition on Mechanical and Biological Properties of Calcium Phosphate Cement

In the present study, we have evaluated the effects of graphene oxide (GO) addition on the physical-mechanical-biological properties of calcium phosphate cement (CPC). The in vitro cellular responses of MG63 and in vivo tissue responses after the implantation of CPC/GO in parietal bone defects of   wistar rats were also investigated. The brushite calcium phosphate cements were prepared by mixi...

متن کامل

Properties of Cement Mortar and Ultra-High Strength Concrete Incorporating Graphene Oxide Nanosheets

In this work, the effect of graphene oxide nanosheet (GONS) additives on the properties of cement mortar and ultra-high strength concrete (UHSC) is reported. The resulting GONS-cement composites were easy to prepare and exhibited excellent mechanical properties. However, their fluidity decreased with increasing GONS content. The UHSC specimens were prepared with various amounts of GONSs (0-0.03...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017